
rCUDA v16.11
User’s Guide

November, 2016

The rCUDA Team

www.rcuda.net info@rcuda.net

Department of Computer Engineering
Technical University of Valencia

Valencia, Spain

Notice:

rCUDA v16.11 provides support for the following versions of CUDA:

• CUDA 8.0

• CUDA 7.5

• CUDA 7.0

Support for other CUDA versions can be provided under request.

1

Please cite the following papers in any published work if you use the rCUDA
software:

• C. Reaño, F. Silla, G. Shainer and S. Schultz, “Local and Remote
GPUs Perform Similar with EDR 100G InfiniBand” , in proceed-
ings of the International Middleware Conference, Vancouver, BC, Canada,
December 2015.

• C. Reaño and F. Silla, “A Performance Comparison of CUDA Re-
mote GPU Virtualization Frameworks” , in proceedings of the Inter-
national Conference on Cluster Computing, Chicago, IL, USA, September
2015.

2

rCUDA TERMS OF USE

IMPORTANT - READ BEFORE COPYING, INSTALLING OR USING. Do not copy, install, or
use the rCUDA software provided under this license agreement, until you have
carefully read the following terms and conditions.

1. LICENSE
1.1 Subject to your compliance with the terms included in this document, you are
granted a limited, non-exclusive, non-sublicensable, non-assignable, free of
charge license to install the copy of the rCUDA software you received with this
license (hereafter "rCUDA" or "Software") on a personal computer or other
device; and personally use the Software. The rCUDA Team reserves all rights not
explicitly granted to you under these terms.

1.2 Restrictions. You may not and you agree not to:

(a) sub-license, sell, assign, rent, lease, export, import, distribute or
transfer or otherwise grant rights to any third party in the Software;

(b) undertake, cause, permit or authorize the modification, creation of
derivative works or improvements, translation, reverse engineering, decompiling,
disassembling, decryption, emulation, hacking, discovery or attempted discovery
of the source code or protocols of the Software or any part or features thereof
(except to the extent permitted by law);

(c) publish or post performance results without explicit authorization from The
rCUDA Team;

(d) remove, obscure or alter any copyright notices or other proprietary notices
included in the Software;

(e) obtain benefits from or charge additional costs for using the Software or
causing the Software (or any part of it) to be used within or to provide
commercial products or services to third parties. For such a use, please contact
The rCUDA Team.

1.3 Third Party Technology. If you are using Software pre-loaded on, embedded
in, combined, distributed or used with or downloaded onto third party products,
hardware, software applications, programs or devices ("Third Party Technology"),
you agree and acknowledge that: (a) you may be required to enter into a separate
license agreement with the relevant third party owner or licensor for the use of
such Third Party Technology; (b) some rCUDA functionalities may not be
accessible through the Third Party Technology and (c) The rCUDA Team cannot
guarantee that the Software shall always be available on or in connection with
such Third Party Technology.

2. PROPRIETARY RIGHTS
2.1 The Software, and rCUDA Website contain proprietary and confidential
information that is protected by intellectual property laws and treaties.

2.2 The content and compilation of contents included in the rCUDA Website,
such as texts, graphics, logos, icons, images and software, are intellectual
property of The rCUDA Team. Additionally, Universitat Politecnica de Valencia
retains industrial property and exploitation rights of the rCUDA software,
and are protected by copyright laws. Such copyright protected content cannot
be reproduced without explicit permission from The rCUDA Team. You will not
take any action to jeopardize, limit or interfere with intellectual property
rights in the Software and/or rCUDA Website.

2.3 In case you, or any of your employees or students, publish any article or
other material resulting from the use of the rCUDA software, that publication
must cite the following references:

C. Reaño, F. Silla, G. Shainer and S. Schultz, "Local and Remote GPUs
Perform Similar with EDR 100G InfiniBand", in proceedings of the International
Middleware Conference, Vancouver, BC, Canada, December 2015.

C. Reaño, F. Silla, "A Performance Comparison of CUDA Remote GPU
Virtualization Frameworks", in proceedings of the International Conference on
Cluster Computing, Chicago, IL, USA, September 2015.

3

3. EXCLUSION OF WARRANTIES, LIMITATION OF LIABILITY AND INDEMNITY
3.1 No Warranties: TO THE MAXIMUM EXTENT PERMITTED BY LAW: THE SOFTWARE AND
rCUDA WEBSITE ARE PROVIDED "AS IS" AND USED AT YOUR SOLE RISK WITH NO
WARRANTIES WHATSOEVER; THE rCUDA TEAM DOES NOT MAKE ANY WARRANTIES, CLAIMS OR
REPRESENTATIONS AND EXPRESSLY DISCLAIMS ALL SUCH WARRANTIES OF ANY KIND, WHETHER
EXPLICIT, IMPLIED OR STATUTORY, WITH RESPECT TO THE SOFTWARE, AND/OR rCUDA
WEBSITE INCLUDING, WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF QUALITY,
PERFORMANCE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR USE FOR A
PARTICULAR PURPOSE. rCUDA FURTHER DOES NOT REPRESENT OR WARRANT THAT THE
SOFTWARE, AND/OR rCUDA WEBSITE WILL ALWAYS BE AVAILABLE, ACCESSIBLE,
UNINTERRUPTED, TIMELY, SECURE, ACCURATE, COMPLETE AND ERROR-FREE OR WILL OPERATE
WITHOUT PACKET LOSS, NOR DOES rCUDA WARRANT ANY CONNECTION TO OR TRANSMISSION
FROM THE INTERNET.

3.2 No Liability: YOU ACKNOWLEDGE AND AGREE THAT rCUDA WILL HAVE NO LIABILITY
WHATSOEVER, WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE) OR ANY OTHER THEORY
OF LIABILITY, AND WHETHER OR NOT THE POSSIBILITY OF SUCH DAMAGES OR LOSSES HAS
BEEN NOTIFIED TO rCUDA, IN CONNECTION WITH OR ARISING FROM YOUR USE OF rCUDA
WEBSITE OR SOFTWARE. YOUR ONLY RIGHT OR REMEDY WITH RESPECT TO ANY PROBLEMS OR
DISSATISFACTION WITH SUCH SOFTWARE AND/OR rCUDA WEBSITE IS TO IMMEDIATELY
DEINSTALL SUCH SOFTWARE AND CEASE USE OF SUCH SOFTWARE AND/OR rCUDA WEBSITE.
Furthermore, rCUDA shall not be liable to you, whether in contract, tort
(including negligence) or any other theory of liability, and whether or not the
possibility of such damages or losses has been notified to rCUDA, for:

(a) any indirect, special, incidental or consequential damages; or

(b) any loss of income, business, actual or anticipated profits, opportunity,
goodwill or reputation (whether direct or indirect); or

(c) any damage to or corruption of data (whether direct or indirect);

(d) any claim, damage or loss (whether direct or indirect) arising from or
relating to:

any product or service provided by a third party under their own terms of
service, including without limitation; any Third Party Technology; any third
party website.

3.3 If any third party brings a claim against rCUDA in connection with, or
arising out of (i) your breach of these Terms; (ii) your breach of any
applicable law of regulation; (iii) your infringement or violation of the rights
of any third parties (including intellectual property rights), you will
indemnify and hold rCUDA harmless from and against all damages, liability, loss,
costs and expenses (including reasonable legal fees and costs) related to such
claim.

4. TERM OF THE LICENSE AND REGULATION LAWS

4.1. The License shall be valid for period of time equal to the term of the rights
to the Software held by Universitat Politecnica de Valencia.

4.2. For matters not expressly provided herein, this agreement shall be subject
to the provisions of the Spanish regulations.

4.3. In the event of any conflict, the parties agree to refer to the Courts of
the city of Valencia (Spain), waiving their own jurisdiction.

4

Contents

1 Introduction 6

2 Installation 9

3 Components and usage 10

3.1 Client Side . 10

3.2 Server Side . 13

3.2.1 cuDNN Users . 13

3.3 Support for P2P Memory Copies between Remote GPUs 14

4 Current limitations 16

5 Further Information 17

6 Credits 18

6.1 Coordination & Supervision . 18

6.2 Development & Testing . 18

6.3 Advising . 18

6.4 rCUDA Team Address . 18

5

Chapter 1

Introduction

The rCUDA framework enables the usage of remote CUDA-compatible devices.
To enable a remote GPU-based acceleration, this framework creates virtual
CUDA-compatible devices on those machines without a local GPU. These vir-
tual devices represent physical GPUs located in a remote host offering GPGPU
services. By leveraging the remote GPU virtualization technique, rCUDA al-
lows to decouple CUDA accelerators from the nodes where they are installed,
so that GPUs across the cluster can be seamlessly accessed from any node. Fur-
thermore, nodes in the cluster can concurrently access remote GPUs. Figure 1.1
graphically depicts the additional flexibility provided by rCUDA.

rCUDA can be useful in the following three different environments:

HPC Clusters and datacenters. In this context, rCUDA increases the flex-
ibility of using the GPUs present in the cluster. Sharing a given GPU
among several applications is made possible. In this way, when rCUDA is
used along with the SLURM job scheduler, the time required to complete
the execution of a job batch is noticeably reduced. This causes that wait-
ing time for jobs is smaller. Furthermore, GPU utilization is increased at
the same time that the overall energy required to execute the job batch is
reduced.

Virtual Machines. In this scenario, rCUDA enables the shared access from
the inside of the virtual machine to the CUDA accelerator(s) installed
in the physical machine. In addition to allow accessing the accelerators
installed in the real machine that hosts the virtual ones, it is also possible
to access remote GPUs from the virtual domain.

Academia. When using rCUDA in a teaching lab with a commodity network,
our middleware offers concurrent access to a few high performance GPUs
from the computers in the lab used by students as well as their laptops,
or even virtual machines in the teaching lab. This reduces the acquisition
costs of the lab infrastructure.

6

P
C

I-e C
P

U

GPU GPU
mem

M
ain

M
em

o
ry

Network

GPU GPU
mem

Interconnection Network

P
C

I-e C
P

U

GPU GPU
mem

M
ain

M
em

o
ry

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain

M
em

o
ry

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain

M
em

o
ry

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain

M
em

o
ry

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain

M
em

o
ry

Network

GPU GPU
mem

(a) When rCUDA is not deployed into the cluster, one or more GPUs must be installed
in those nodes of the cluster intended for GPU computing. This usually leads to cluster
configurations with one or more GPUs attached to all the nodes of the cluster. Nevertheless,
GPU utilization may be lower than 100%, thus wasting hardware resources and delaying
amortizing initial expenses.

C
P

U

M
ain

M
em

o
ry

Network

P
C

I-e

P
C

I-e

C
P

U

M
ain

M
em

o
ry

Network

C
P

U

M
ain

M
em

o
ry

Network

P
C

I-e

P
C

I-e C
P

U

GPU GPU
mem

M
ain

M
em

o
ry

Network

GPU GPU
mem

Interconnection Network
P

C
I-e C

P
U

GPU GPU
mem

M
ain

M
em

o
ry

Network

GPU GPU
mem

P
C

I-e C
P

U

GPU GPU
mem

M
ain

M
em

o
ry

Network

GPU GPU
mem

(b) When rCUDA is leveraged in the cluster, only those GPUs actually needed to address
overall workload must be installed in the cluster, thus reducing initial acquisition costs and
overall energy consumption. rCUDA allows sharing the (reduced amount of) GPUs present
in the cluster among all the nodes.

C
P

U

M
ain

M
em

o
ry

Network

P
C

I-e

C
P

U

M
ain

M
em

o
ry

Network

P
C

I-e

C
P

U

M
ain

M
em

o
ry

Network

P
C

I-e

C
P

U

M
ain

M
em

o
ry

Network

P
C

I-e

C
P

U

M
ain

M
em

o
ry

Network

P
C

I-e

P
C

I-e

C
P

U

M
ain

M
em

o
ry

Network

Interconnection Network

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

GPU GPU
mem

Logical connections

(c) From a logical point of view, GPUs in the cluster can be seen as a pool of GPUs detached
from the nodes and accessible through the cluster interconnect, in the same way as networked
storage (NAS) is shared among all the cluster nodes and concurrently accessed by them.

Figure 1.1: Different cluster configurations: (a) the traditional CUDA-based cluster
deployment; (b) physical view of the cluster when leveraging rCUDA; (c) logical view
of the cluster with rCUDA.

7

The current version of rCUDA (v16.11) implements all functions in the CUDA
Runtime API and CUDA Driver API version 8.0, (as well as CUDA 7.5 and
CUDA 7.0), excluding those related with graphics interoperability, Unified Mem-
ory Management and Module Management. It also implements all the functions
in the following libraries of CUDA Toolkit 8.0, 7.5, and 7.0: cuRAND, cuBLAS
(excluding complex), cuSPARSE, and cuFFT (excluding complex). The cuDNN
version 5.1 library is partially supported. Other libraries provided by NVIDIA
will be supported in future rCUDA releases. rCUDA 16.11 targets the Linux
operating system (for 64-bit x86-based configurations). It provides support for
the same Linux distributions as CUDA does.

8

Chapter 2

Installation

The installation of the rCUDA software is very simple. The binaries of the
rCUDA software are distributed whithin a tarball which has to be decompressed
manually by the user. The steps to install rCUDA binaries are:

1. Decompress the rCUDA package.

2. Copy the rCUDA/lib folder to the client(s) node(s) (without GPU) as it
is explained in Section 3.1.

3. Copy the rCUDA folder to the server node (with GPU) as it is explained
in Section 3.2.

9

Chapter 3

Components and usage

rCUDA is organized following a client-server distributed architecture, as shown
in Figure 3.1. The client middleware is contacted by the application demanding
GPGPU services, both running in the same cluster node. The rCUDA client
presents to the application the very same interface as the regular NVIDIA CUDA
Runtime and Driver APIs. Upon reception of a request from the application,
the client middleware processes it and forwards the corresponding requests to
the rCUDA server middleware. In turn, the server interprets the requests and
performs the required processing by accessing the real GPU to execute the corre-
sponding request. Once the GPU has completed the execution of the requested
command, results are gathered by the rCUDA server, which sends them back to
the client middleware. There, the results are finally forwarded to the demanding
application.

In order to optimize client/server data exchange, rCUDA employs a customized
application-level communication protocol. Furthermore, rCUDA provides effi-
cient support for several underlying network technologies. To that end, rCUDA
supports runtime-loadable specific communication modules that currently tar-
get the InfiniBand network (using InfiniBand verbs) and the general TCP/IP
protocol stack (see Figure 3.1). Additional network technologies may be sup-
ported in the future.

3.1 Client Side

The client side of the rCUDA middleware is a library of wrappers that replaces
the CUDA Toolkit dynamic libraries mentioned at the end of Chapter 1. In this
way, CUDA applications that use rCUDA are not aware of being accessing an
external device. Also, they do not need any source code modification.

10

CUDAw
Runtimewlibrary

rCUDAwserver
engine

commonwcommunicationwAPI

CUDAw
Driverwlibrary

CUDAwRuntimewAPI

rCUDAwclient
engine

commonwcommunicationwAPI

Hardware

Software

Client side Server side

Network GPU

Application

TCP/IP
communication

module

InfiniBand
communication

module

Networkw"X"
communication

module

TCP/IP
communication

module

InfiniBand
communication

module

Networkw"X"
communication

module

Figure 3.1: rCUDA architecture, showing also the runtime-loadable specific commu-
nication modules.

The rCUDA client is distributed in a set of files: “libcuda.so.m.n1, libcudart.so.x.y2,
libcublas.so.x.y, libcufft.so.x.y, libcusparse.so.x.y, libcurand.so.x.y and libcudnn.
so.x.y. These shared libraries should be placed in those machines accessing
remote GPGPU services. Set the LD_LIBRARY_PATH environment vari-
able according to the final location of these files (typically “/opt/rCUDA/lib”,
“/usr/local/rCUDA/lib”, or “$HOME/rCUDA/lib”, for instance).

In order to properly execute the applications using the rCUDA library, set the
following environment variables:

• RCUDA_DEVICE_COUNT: indicates the number of GPUs which are
accessible from the current node.
Usage: “RCUDA_DEVICE_COUNT=<number_of_GPUs>”
For example, if the current node will access two remote GPUs:
“RCUDA_DEVICE_COUNT=2”

• RCUDA_DEVICE_X: indicates where GPU X, for the client being con-
figured, is located.
Usage: “RCUDA_DEVICE_X=<server[@<port>]>[:GPUnumber]”
For example, if GPUs 0 and 1 assigned to the current client are located
at server “192.168.0.1” using the default rCUDA port (8308):
“RCUDA_DEVICE_0=192.168.0.1”
“RCUDA_DEVICE_1=192.168.0.1:1”

1m.n are based on the exact version of the CUDA driver.
2x.y refer to the exact version of CUDA supported by the provided rCUDA package.

11

Furthermore, as the nvcc compiler links with CUDA static libraries by default,
a compilation using CUDA dynamic libraries is needed to allow the use of the
rCUDA software. This step can be done by the user in two different ways:

• If nvcc compiler is used, the flag -cudart=shared is needed.

• If gcc/++ compiler is used, the -lcudart flag is needed.

In case the user of rCUDA is compiling the NVIDIA CUDA Samples, he/she
should notice that NVIDIA CUDA Samples must be compiled after the EX-
TRA_NVCCFLAGS environment variable has been set to --cudart=shared.

If an InfiniBand network is available and the rCUDA user prefers to use the high
performance InfiniBand Verbs APIs instead of the lower performance TCP/IP
socket API, then the following environment variables should be considered:

• RCUDAPROTO: This environment variable must be set to “IB” in order
to make use of the InfiniBand Verbs API. If this variable is not set, or if
it is set to “TCP”, then the TCP/IP sockets API will be used even if an
InfiniBand network is available. For example:
“RCUDAPROTO=IB” will use the InfiniBand Verbs API
“RCUDAPROTO=TCP” will use the TCP/IP sockets API even if an In-
finiBand network is used

• RCUDAIBDEVNO: (Optional. Default value is 1). In case the computer
where rCUDA is being used has two or more InfiniBand network adapters,
then the user may instruct rCUDA what adapter to use by appropriately
setting this environment variable to the number of the selected InfiniBand
adapter. For example:
“RCUDAIBDEVNO=1” will use the first InfiniBand network adapter
“RCUDAIBDEVNO=2” will use the second InfiniBand network card

• RCUDAIBPORTNO and RCUDAIBPORTNO2: (Optional. By default
only port 1 is used). In case the computer executing rCUDA makes use of
a dual-port InfiniBand card, then the rCUDA user may select to use the
first port, the second port, or both. In case the rCUDA user decides to
use only one of the two ports, then the port to be used may be selected by
setting the environment variable “RCUDAIBPORTNO” to “1” or to “2”.
In case the rCUDA user decides to concurrently use both ports, then the
environment variables “RCUDAIBPORTNO” and “RCUDAIBPORTNO2”
should be set to “1” and “2”, respectively. Notice that using both ports
means that every single data transfer between the rCUDA client and server
will be split among both ports, which will be concurrently used, thus ag-
gregating their individual performance. For example:
“RCUDAIBPORTNO=1” will use the first port of the InfiniBand network
adapter
“RCUDAIBPORTNO=2” will use the second port of the InfiniBand net-
work card
“RCUDAIBPORTNO=1” and “RCUDAIBPORTNO2=2” will concurrently
use both ports of the InfiniBand network adapter

12

It is important to remark that the RCUDAPROTO variable must be set both
in the client and server sides with the same value. In addition, when using two
ports, the RCUDAIBPORTNO and RCUDAIBPORTNO2 variables must be set
both in the client and server sides.

3.2 Server Side

The rCUDA server is configured as a daemon (rCUDAd) that runs in those
nodes offering GPGPU acceleration services.

Set the LD_LIBRARY_PATH environment variable according to the location
of the CUDA libraries (typically “/usr/local/cuda/lib64”). Notice that this
is the path to the original CUDA libraries, not the rCUDA ones. Add also to
the LD_LIBRARY_PATH environment variable the path to rCUDA cuDNN
library (typically “$HOME/rCUDA/lib/cudnn”). See Section 3.2.1 for further in-
formation on the use of the cuDNN library.

Set the “RCUDAPROTO” environment variable to IB if an InfiniBand network
is available and the InfiniBand Verbs API is to be used. The rest of environ-
ment variables related to the use of the InfiniBand Verbs API detailed in the
previous section (such as RCUDAIBDEVNO, RCUDAIBPORTNO, and RCU-
DAIBPORTNO2) should also be considered.

This daemon offers the following command-line options:

-i : Do not daemonize. Instead, run in interactive mode.

-l : Local mode using AF_UNIX sockets (TCP only).

-n <number> : Number of concurrent servers allowed. 0 stands for unlimited
(default).

-p <port> : Specify the port to listen to (default: 8308).

-v Verbose mode.

-h Print usage information.

3.2.1 cuDNN Users

If you are not going to use the NVIDIA CUDA Deep Neural Network library
(cuDNN), you can ignore this section.

If, on the contrary, you plan to use this library, please, notice that in order
to use the cuDNN library, the LD_LIBRARY_PATH environment variable
in the server node must contain the location of the NVIDIA cuDNN libraries

13

(typically “/usr/local/cudnn/lib”), instead of the rCUDA ones (typically
“$HOME/rCUDA/lib/cudnn”).

In addition, note that the cuDNN library is distributed separately from the
CUDA package and, therefore, must be explicitly downloaded and installed.
Furthermore, notice that the cuDNN library is not supported by the rCUDA
framework for CUDA versions earlier than 6.5.

3.3 Support for P2P Memory Copies between Re-
mote GPUs

Figure 3.2 presents the possible scenarios when making peer-to-peer (P2P) mem-
ory copies with CUDA and rCUDA. As we can see, with CUDA there is only
one possible scenario, depicted in Figure 3.2a, where the GPUs are located in
the same cluster node and are interconnected by the PCIe link. On the contrary,
when using rCUDA there are two possible scenarios for making copies between
remote GPUs: (i) the remote GPUs are located in the same remote node and
are interconnected by the PCIe link as shown in Figure 3.2b, and (ii) the remote
GPUs are located in different remote nodes in the cluster and therefore they are
interconnected by the network fabric, as depicted in Figure 3.2c.

By default, rCUDA supports the first scenario exposed in Figure 3.2b. In this
manner, it is possible to perform memory copies between remote GPUs located
in the same server node. However, the second scenario presented in Figure 3.2c
is only supported for InfiniBand networks. The TCP port for setting up the
connection for P2P memory copies between remote GPUs could be indicated
in the environment variable “RCUDAP2P_TCP_PORT”. If it is not set, port
number 18515 is used by default.

14

GPU2
Memory

GPU1

CPU

Copy

Memory

Memory

NODE

PCIe

(a) CUDA scenario.

Network
fabric

NODE 0

rCUDA
client

CPU0

Memory

GPU2
Memory

GPU1

CPU

Copy

Memory

Memory

NODE 1

rCUDA
server

PCIe

(b) rCUDA scenario 1.

GPU2

CPU2

Memory

Memory

GPU1

CPU1

Memory

Memory

Copy

Network
fabric

NODE 2

rCUDA
server 2

NODE 1

rCUDA
server 1

NODE 0

rCUDA
client

CPU0

Memory

PCIe PCIe

(c) rCUDA scenario 2.

Figure 3.2: Possible scenarios for P2P memory copies with CUDA and rCUDA.

15

Chapter 4

Current limitations

The current implementation of rCUDA features the following limitations:

• Graphics interoperability is not implemented. Missing modules: OpenGL,
Direct3D 9, Direct3D 10, Direct3D 11, VDPAU, Graphics

• The Profiler Control module is not supported.

• Unified Memory Management is not supported.

• Module Management is not supported

• Timing with the event management functions might be inaccurate, since
these timings will discard network delays. Using standard Posix timing
procedures such as “clock_gettime” is recommended.

16

Chapter 5

Further Information

For further information, please refer to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Also, do not hesitate to
contact support@rcuda.net for any questions or bug reports.

17

Chapter 6

Credits

6.1 Coordination & Supervision

Federico Silla
Email: fsilla@disca.upv.es

6.2 Development & Testing

Javier Prades, Carlos Reaño and Jaime Sierra
Emails: japraga@gap.upv.es, carregon@gap.upv.es and jsierra@gap.upv.es

6.3 Advising

Jose Duato
Email: jduato@disca.upv.es

6.4 rCUDA Team Address

Federico Silla
Department of Computer Engineering

Technical University of Valencia
DISCA, Edificio 1G, Camino de Vera, s/n

46022 – Valencia, Spain
Email: support@rcuda.net

18

Acknowledgements

This work was supported by PROMETEO program from Generalitat Valenciana
(GVA) under Grant PROMETEO/2008/060 and also by PROMETEO program
phase II under Grant PROMETEOII/2013/009. Authors are also grateful for
the generous support provided by Mellanox Technologies.

Bibliography

[1] José Duato, Francisco D. Igual, Rafael Mayo, Antonio J. Peña, Enrique S.
Quintana-Ortí, and Federico Silla. An efficient implementation of GPU
virtualization in high performance clusters. In Euro-Par 2009, Parallel
Processing – Workshops, volume 6043 of Lecture Notes in Computer Sci-
ence, pages 385–394. Springer-Verlag, 2010.

[2] José Duato, Antonio J. Peña, Federico Silla, Rafael Mayo, and Enrique S.
Quintana-Ortí. rCUDA: reducing the number of GPU-based accelerators
in high performance clusters. In Proceedings of the 2010 International
Conference on High Performance Computing and Simulation (HPCS 2010),
pages 224–231, Caen, France, June 2010.

[3] José Duato, Antonio J. Peña, Federico Silla, Rafael Mayo, and Enrique S.
Quintana-Ortí. Performance of cuda virtualized remote gpus in high per-
formance clusters. In Proceedings of the 2011 International Conference on
Parallel Processing (ICPP 2011), Taipei, Taiwan, September 2011.

[4] José Duato, Antonio J. Peña, Federico Silla, Juan C. Fernández, Rafael
Mayo, and Enrique S. Quintana-Ortí. Enabling CUDA acceleration within
virtual machines using rCUDA. In Proceedings of the 2011 International
Conference on High Performance Computing (HiPC 2011), Bangalore, In-
dia, December 2011.

[5] Carlos Reaño, Antonio J. Peña, Federico Silla, Rafael Mayo, Enrique S.
Quintana-Ortí, and José Duato. CU2rCU: towards the complete rCUDA
remote GPU virtualization and sharing solution. In Proceedings of the 2012
International Conference on High Performance Computing (HiPC 2012),
Pune, India, June 2012.

[6] Carlos Reaño, Antonio J. Peña, Federico Silla, Rafael Mayo, Enrique S.
Quintana-Ortí, and José Duato. Influence of infiniband FDR on the perfor-
mance of remote GPU virtualization. In Proceedings of the IEEE Interna-
tional Conference on Cluster Computing (CLUSTER 2013), Indianapolis,
USA, October 2013.

[7] Adrián Castelló, José Duato, Rafael Mayo, Antonio J. Peña, Enrique S.
Quintana-Ortí, Vicente Roca, and Federico Silla. On the Use of Remote
GPUs and Low-Power Processors for the Acceleration of Scientific Appli-
cations. In The Fourth International Conference on Smart Grids, Green

20

Communications and IT Energy-aware Technologies, Chamonix, France,
April 2014.

[8] Carlos Reaño, Federico Silla, Antonio J. Peña, Gilad Shainer, Scot Schultz,
Adrián Castelló, Enrique S. Quintana-Ortí, and José Duato. Boosting the
Performance of Remote GPU Virtualization Using InfiniBand Connect-IB
and PCIe 3.0. In Proceedings of the IEEE International Conference on
Cluster Computing (CLUSTER 2014), Madrid, Spain, September 2014.

[9] Sergio Iserte, Adrián Castelló, Rafael Mayo, Enrique S. Quintana-Ortí, Car-
los Reaño, Javier Prades, Federico Silla, and José Duato. SLURM Support
for Remote GPU Virtualization: Implementation and Performance Study.
In Proceedings of the International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD 2014), Paris, France, Oc-
tober 2014.

[10] Antonio J. Peña, Carlos Reaño, Federico Silla, Rafael Mayo, Enrique S.
Quintana-Orti, and José Duato. A complete and efficient CUDA-sharing
solution for HPC clusters. Parallel Computing, 40(10):574 – 588, 2014.

[11] Carlos Reaño and Federico Silla. On the design of a demo for exhibiting
rCUDA. In Proceedings of the 15th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), Shenzhen, Guangdong,
China, May 2015.

[12] Carlos Reaño, Federico Silla, Adrián Castelló Gimeno, Antonio J. Peña,
Rafael Mayo, Enrique S. Quintana-Ortí, and José Duato. Improving the
user experience of the rCUDA remote GPU virtualization framework. Con-
currency and Computation: Practice and Experience, 27(14):3746–3770,
2015.

[13] Carlos Reaño, Federico Silla, Gilad Shainer, and Scot Schultz. Local and
remote GPUs perform similar with EDR 100G InfiniBand. In Proceedings
of the Industrial Track of the 16th International Middleware Conference,
Middleware Industry 2015, Vancouver, BC, Canada, December 7-11, 2015,
pages 4:1–4:7, 2015.

[14] Carlos Reaño and Federico Silla. A live demo on remote GPU accelerated
deep learning using the rCUDA middleware. In Proceedings of the Posters
and Demos Session of the 16th International Middleware Conference, Mid-
dleware Posters and Demos 2015, Vancouver, BC, Canada, December 7-11,
2015, pages 3:1–3:2, 2015.

[15] Blesson Varghese, Javier Prades, Carlos Reaño, and Federico Silla.
Acceleration-as-a-service: Exploiting virtualised GPUs for a financial ap-
plication. In 11th IEEE International Conference on e-Science, e-Science
2015, Munich, Germany, August 31 - September 4, 2015, pages 47–56,
2015.

[16] Carlos Reaño and Federico Silla. InfiniBand verbs optimizations for remote
GPU virtualization. In 2015 IEEE International Conference on Cluster
Computing, CLUSTER 2015, Chicago, IL, USA, September 8-11, 2015,
pages 825–832, 2015.

21

[17] Carlos Reaño and Federico Silla. A performance comparison of CUDA re-
mote GPU virtualization frameworks. In 2015 IEEE International Confer-
ence on Cluster Computing, CLUSTER 2015, Chicago, IL, USA, Septem-
ber 8-11, 2015, pages 488–489, 2015.

[18] C. Reaño and F. Silla. On the deployment and characterization of CUDA
teaching laboratories. In EDULEARN15 Proceedings, 7th International
Conference on Education and New Learning Technologies, pages 3509–
3516. IATED, 6-8 July, 2015 2015.

[19] C. Reaño and F. Silla. Reducing the costs of teaching CUDA in laboratories
while maintaining the learning experience quality. In INTED2015 Proceed-
ings, 9th International Technology, Education and Development Confer-
ence, pages 3651–3660. IATED, 2-4 March, 2015 2015.

[20] Javier Prades, Carlos Reaño, and Federico Silla. CUDA acceleration for
xen virtual machines in InfiniBand clusters with rCUDA. In Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2016, Barcelona, Spain, March 12-16, 2016, pages
35:1–35:2, 2016.

[21] Sergio Iserte and Javier Prades and Carlos Reaño and Federico Silla. In-
creasing the Performance of Data Centers by Combining Remote GPU
Virtualization with Slurm. In Proceedings of the 16th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID 2016),
Cartagena, Colombia, May 2016.

[22] Javier Prades and Fernando Campos and Carlos Reaño and Federico Silla.
GPGPU as a service: Providing GPU-acceleration services to federated
cloud systems. In Gabor Kecskemeti, Attila Kertesz, and Zsolt Nemeth,
editors, Developing Interoperable and Federated Cloud Architecture, chap-
ter 10, pages 281–313. IGI Global, 2016.

[23] Ferran Perez, Carlos Reaño, and Federico Silla. Providing CUDA accel-
eration to KVM virtual machines in InfiniBand clusters with rcuda. In
Distributed Applications and Interoperable Systems - 16th IFIP WG 6.1
International Conference, DAIS 2016, Held as Part of the 11th Interna-
tional Federated Conference on Distributed Computing Techniques, Dis-
CoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, pages
82–95, 2016.

[24] Carlos Reaño and Federico Silla. Reducing the Performance Gap of Remote
GPU Virtualization with InfiniBand Connect-IB. In Proceedings of the
21st IEEE Symposium on Computers and Communications (ISCC 2016),
Messina, Italy, June 2016.

[25] Carlos Reaño and Federico Silla. Tuning remote GPU virtualization for
InfiniBand networks. Accepted for publication in The Journal of Supercom-
puting, 2016.

[26] Javier Prades, Blesson Varghese, Carlos Reaño, and Federico Silla. Multi-
tenant virtual GPUs for optimising performance of a financial risk applica-
tion. Accepted for publication in Journal of Parallel and Distributed Com-
puting, 2016.

22

[27] Carlos Reaño and Federico Silla. Extending rCUDA with support for P2P
memory copies between remote GPUs. In Proceedings of the 18th IEEE
International Conference on High Performance Computing and Communi-
cations (HPCC 2016), Sydney, Australia, December 2016.

23

